Extensions 1→N→G→Q→1 with N=D42S3 and Q=C22

Direct product G=N×Q with N=D42S3 and Q=C22
dρLabelID
C22×D42S396C2^2xD4:2S3192,1515

Semidirect products G=N:Q with N=D42S3 and Q=C22
extensionφ:Q→Out NdρLabelID
D42S31C22 = D813D6φ: C22/C1C22 ⊆ Out D42S3484D4:2S3:1C2^2192,1316
D42S32C22 = D811D6φ: C22/C1C22 ⊆ Out D42S3484D4:2S3:2C2^2192,1329
D42S33C22 = D85D6φ: C22/C1C22 ⊆ Out D42S3488+D4:2S3:3C2^2192,1333
D42S34C22 = D86D6φ: C22/C1C22 ⊆ Out D42S3488-D4:2S3:4C2^2192,1334
D42S35C22 = C2×D8⋊S3φ: C22/C2C2 ⊆ Out D42S348D4:2S3:5C2^2192,1314
D42S36C22 = C2×D83S3φ: C22/C2C2 ⊆ Out D42S396D4:2S3:6C2^2192,1315
D42S37C22 = C2×Q8.7D6φ: C22/C2C2 ⊆ Out D42S396D4:2S3:7C2^2192,1320
D42S38C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out D42S3484D4:2S3:8C2^2192,1326
D42S39C22 = S3×C8⋊C22φ: C22/C2C2 ⊆ Out D42S3248+D4:2S3:9C2^2192,1331
D42S310C22 = D84D6φ: C22/C2C2 ⊆ Out D42S3488-D4:2S3:10C2^2192,1332
D42S311C22 = D24⋊C22φ: C22/C2C2 ⊆ Out D42S3488+D4:2S3:11C2^2192,1336
D42S312C22 = C2×D46D6φ: C22/C2C2 ⊆ Out D42S348D4:2S3:12C2^2192,1516
D42S313C22 = C2×Q8○D12φ: C22/C2C2 ⊆ Out D42S396D4:2S3:13C2^2192,1522
D42S314C22 = C6.C25φ: C22/C2C2 ⊆ Out D42S3484D4:2S3:14C2^2192,1523
D42S315C22 = S3×2+ 1+4φ: C22/C2C2 ⊆ Out D42S3248+D4:2S3:15C2^2192,1524
D42S316C22 = D6.C24φ: C22/C2C2 ⊆ Out D42S3488-D4:2S3:16C2^2192,1525
D42S317C22 = S3×2- 1+4φ: C22/C2C2 ⊆ Out D42S3488-D4:2S3:17C2^2192,1526
D42S318C22 = C2×S3×C4○D4φ: trivial image48D4:2S3:18C2^2192,1520
D42S319C22 = D12.39C23φ: trivial image488+D4:2S3:19C2^2192,1527

Non-split extensions G=N.Q with N=D42S3 and Q=C22
extensionφ:Q→Out NdρLabelID
D42S3.1C22 = SD1613D6φ: C22/C1C22 ⊆ Out D42S3484D4:2S3.1C2^2192,1321
D42S3.2C22 = D8.10D6φ: C22/C1C22 ⊆ Out D42S3964-D4:2S3.2C2^2192,1330
D42S3.3C22 = SD16.D6φ: C22/C1C22 ⊆ Out D42S3968-D4:2S3.3C2^2192,1338
D42S3.4C22 = C2×D4.D6φ: C22/C2C2 ⊆ Out D42S396D4:2S3.4C2^2192,1319
D42S3.5C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out D42S3484D4:2S3.5C2^2192,1327
D42S3.6C22 = S3×C8.C22φ: C22/C2C2 ⊆ Out D42S3488-D4:2S3.6C2^2192,1335

׿
×
𝔽